Author:
Gu Xiong ,Gao Shang-Peng ,
Abstract
Based on a plane wave pseudopotential method within the framework of density functional theory, equilibrium structure, bulk modulus, and relative stability were calculated for 6 kinds of TiN polytypes including B1 (NaCl structure), B2 (CsCl structure), B3 (zincblende structure), Bk (hexagonal BN structure), Bh (WC structure) and B81 (NiAs structure). Theoretical calculation also showed that TiN can not exist in B4 (wurtizite) structure. Through geometry optimization under hydrostatic pressure, the enthalpy of each TiN phase at different pressures was obtained. It was found that TiN with B1 structure is the most stable phase at pressure lower than about 345 GPa, whereas B2 TiN is the most stable at pressure above 345 GPa. Volume discontinuity and bulk modulus change can be observed during the transition from B1 to B2 phase.
Publisher
Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences
Subject
General Physics and Astronomy
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献