Molecular dynamics simulation for the impact of hydrazineon the water of pressurized water reactors

Author:

Shi Shun-Ping ,Li Yong ,Fan Yong-Sheng ,Chen Xu ,Zhou Wei ,

Abstract

In this paper, we used molecular dynamics to simulate dynamic properties and micro-structure of the water-hydrazine particle system under various conditions:chamber condition of 1 atm, 298 K; pressurized water reactor (PWR) environment of 155 atm, 626 K; with number of water molecules of 256, numbers of hydrazine (N2H4) molecules of 0, 25, 50 and 75. And we have also explored the impact on the dissolved oxygen in water when hydrazine molecule is added to the system. The simulation results show that in the chamber ambient, when the number of molecules of hydrazine varies from 0 to 25, 50 and 75, the mean square displacement (MSD) in the particle system will increase with the number of particles of the hydrazine. The MSD for hydrazine molecule of number 0 will be ten less than that of 25, 50 and 75. Under the PWR environment, with hydrazine molecule number of 50, the MSD is about 4 times higher than that in chamber ambient. At the same time, under such condition, the MSD of particle system does not increase with the number of hydrazine molecules. The MSD with hydrazine molecule of 50 is higher than its counterpart with the number of molecules of 25 or 75. In addition, the micro-structure of particle systems, from the perspective of the radial distribution functions (RDF), will increase with the increase of concentration of hydrazine in chamber ambient. This conclusion goes along with the fact that hydrazine is easy to react with water to generate hydrazine hydrate. While in the pressurized water reactor environment, the radial distributions of the water with the number of hydrazine molecules of 25, 50 and 0 will have no big change. But the radial distributions with the number of hydrazine molecules of 75 increase significantly. It can be seen from simulation data that hydrazine added to PWR significantly inhibits the dissolved oxygen in water, but the inhibition does not increase in proportion to the increase of the concentration of hydrazine. This phenomenon and its causes are revealed comprehensively in this paper.

Publisher

Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences

Subject

General Physics and Astronomy

Reference30 articles.

1. Sennour M, Laghoutaris P, Guerre C 2009 Journal of Nuclear Materials 393 254

2. Liu Y Z 2007 Ph. D. Dissertation (Chengdu: University of Electronic Science and Technology of China)(in Chinese)[刘彦章 2007 博士学位论文(成都:电子科技大学)]

3. Tong L S 1983 Pressurized Water Reactor Manual Analysis (Beijing:Atomic Energy Press) p7—8

4. Zhang Q X 1984 Pressurized water reactor issue of Chemistry and Chemical Engineering (Beijing:Atomic Energy Press) p179

5. Yang Z F, Mi P Q, Zhu B Z 1988 Atom Energy Science and Technology 22 463

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3