Influence of the high-repetition-pulsed laser beam size on the damage characteristics of absorbing glass

Author:

Han Jing-Hua ,Feng Guo-Ying ,Yang Li-Ming ,Zhang Qiu-Hui ,Fu Yu-Qing ,Niu Rui-Hua ,Zhu Qi-Hua ,Xie Xu-Dong ,Zhou Shou-Huan ,

Abstract

The influence of the beam size of pulsed laser on damage morphology of absorbing glass, as well as the mechanism of the damage produced by high-repetition-pulsed laser (kHz magnitude), is investigated. We show that the damage morphology changes greatly with the decrease of the beam size under the condition that the energy of each individual pulse,the number of the pulses incident on the glass and the repetition frequency are kept invariant. The damage is induced by melting of the glass material due to dispersed energy of the incident laser with large beam size. With decreased beam size of laser, the material will break resulting from the melting and evaporating of glass induced by the densing and increasingly deposited laser energy in glass material. When the beam size is further reduced, too intensive laser will penetrate the dielectric material on the surface of glass. As a result, the laser induced plasma shock wave occurs. In addition, the super-heated liquid at the center where the laser beam interacts with glass will be produced as a consequence of the tremendous deposited laser energy. When the threshold of phase explosion is reached, the mixture of the evaporated, melted and original solid materials will blast outwards. Consequently, characteristic morphology made up of three regions covered with solid granules of original glass material and the re-crystallized material of the evaporated and melted glass will form around the damage crater.

Publisher

Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences

Subject

General Physics and Astronomy

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3