Influence of improved anti-Stokes energy transfer between rare earth ions in ErP5O14 noncrystal on dynamic study

Author:

Chen Ying ,Chen Xiao-Bo ,Zhang Hui-Min ,Xu Xiao-Ling ,Wang Ce ,

Abstract

Since the visible quantum cutting in Eu3+–Gd3+ material was reported, the importance, the application, and the significance of the quantum cutting phenomenon have been widely recognized.The rate equations which describe the luminescence dynamic processes for different concentrations of (ErxLa1-xP5O14) noncrystal are established in this paper. The coefficients exp{hc k/kT} is introduced in to the calculation of anti-Stokes energy transfer rate to distinguish Stokes energy transfer.All dynamic processes have been simulated separately with and without considering this coefficient for the energy transfer rate of Er0.01La0.99P5O14,Er0.1La0.9P5O14 and ErP5O14 noncrystals when their 2H11/2 ,4I9/2 and4I11/2 levels are excited.The results show that it is essential to take the coefficient into calculation particularly for ErP5O14 noncrystal where energy transfer plays a key role.There is no influence though the distance between rare earth ions is larger.And it is found that infrared quantum cutting exsists in ErP5O14 noncrystal excited by visible light. The relative nonradiative relaxation rate, the spontaneous emission rate and the energy transfer rate are calculated particularly , The relative energy transfer dynamics is analyzed.It is found that the {4H11/2→4I9/2,4I15/2→4I13/2} energy transfer with a rate of 239500s-1, is the main reason for 2H11/2 energy level to have the infrared quantum cutting, Which is meaningful for finding high-efficiency solar cell materials.

Publisher

Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences

Subject

General Physics and Astronomy

Reference15 articles.

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3