Author:
Feng Jun ,Xu Wei ,Gu Ren-Cai ,Di Gen-Hu ,
Abstract
In this paper,the dynamic behavior of Duffing-Rayleigh oscillator subjected to combined bounded noise and harmonic excitations is investigated. Theoretically, the random Melnikov's method is used to establish the conditions of existence of chaotic motion. The result implies that the chaotic motion of the system turns into the periodic motion with the increase of nonlinear damping parameter, and the threshold of random excitation amplitude for the system to change from chaotic to periodic motion in the oscillator turns from increasing to constant as the intensity of the noise increases. Numerically,the largest Lyapunov exponents and the Poincare maps are also used for verifying the conclusion.
Publisher
Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences
Subject
General Physics and Astronomy
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献