Molecular dynamics simulation of resonance properties of strain graphene nanoribbons

Author:

Gu Fang ,Zhang Jia-Hong ,Yang Li-Juan ,Gu Bin ,

Abstract

Starting from the energy conversion and energy conservation law in the constant-NVE ensemble, the molecular dynamics method using the COMPASS force field was applied to investigate the dynamic properties of graphene nanoribbons (GNRs) together with the GNR-based strain sensors. The following results were obtained: (a) the nonlinear response dominates the dynamic behavior of GNRs, and their ultra-high fundamental frequencies are closely related with the length and boundary conditions; (b) the effect of uniaxial tensile strain on the fundamental frequencies of GNRs is significant and strongly depends on boundary conditions, and the GNR-based strain sensor clamped on four edges has a higher frequency shift, and its sensitivity is up to 7800 Hz / nanostrain, much higher than that of carbon nanotube-based strain sensor with the same length; (c) the resonant characteristics of GNRs and GNR-based strain sensors are insensitive to the chirality. The obtained results suggest that, through cutting the appropriate size and setting the boundary conditions, the GNRs could be used to design a new generation of nanoelectromechanical system (NEMS) resonators and strain sensors, owing to their ultra-low density and ultra-high fundamental frequencies as well as ultra-high sensitivity without considering the impact of chirality.

Publisher

Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences

Subject

General Physics and Astronomy

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3