Effect of assembled bar magnet configuration on levitation force of single domain GdBCO bulk superconductor

Author:

Ma Jun ,Yang Wan-Min ,

Abstract

By measuring the levitation forces between a single domain GdBCO bulk superconductor and assembled bar magnets(ABM) in different configurations at liquid nitrogen temperature, the effects of ABM configurations on the levitation force of single domain GdBCO bulk superconductor are investigated. The maximum levitation force is obtained at the same vertical gap distance Z=5 mm between the superconductor and the ABM for configurations with different lateral gap distance(D)between the magnets of the ABM. It is found that 1) for the ABM consisting of 3 bar magnet, the levitation force of the GdBCO bulk decreases from 22.8N to 9.7N with the D value increasing from 0 to 30 mm, when the magnetic pole N of the middle magnet is pointed upwards and the directions of magnetic pole N of two side magnets are pointed to the middle magnet in horizontal direction; the levitation force of the GdBCO bulk increases first from 9.2N to 13.9N and then decreases to10.4 N with D value increasing from 0 to 30mm, if the magnetic pole N of the middle magnet is pointed upwards and the directions of magnetic pole N of two side magnets are pointed downwards;2)for the ABM consisting of 2 bar magnets, the levitation force of the GdBCO bulk decreases from 11.2N to 1.2N with D value increasing from 0 to 30mm, when the directions of magnetic pole N of two side magnets are pointed upwards; the levitation force of the GdBCO bulk increases first from 6.0N to 6.8N and then decreases to 2.9N with D value increasing from 0 to 30mm, if the directions of magnetic pole N of two magnets are anti-parallel in horizontal direction; 3)for the ABM consisting of only 1 bar magnets, D≡0, and the levitation force of the GdBCO bulk is about 9.5N. The results indicate that the magnet configuration and its detailed parameters of ABM are very important for improving the levitation force of a superconductor and helpful for designing and application based on the superconducting magnetic levitation system.

Publisher

Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences

Subject

General Physics and Astronomy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3