The research of information dissemination model on online social network

Author:

Zhang Yan-Chao ,Liu Yun ,Zhang Hai-Feng ,Cheng Hui ,Xiong Fei ,

Abstract

In this paper, we propose a general stochastic model for the information dissemination on the online social network. The model considers the node of degree and propagation mechanism, utilizes complex network theory and dynamics of infectious diseases, and finally establishes the dynamic evolution equations. The dynamic evolution equations describe the evolution process of different types of nodes, and show that the propagation process is influenced by network topology and propagation mechanism. We simulate the information spreading process, and analyze the behavior of different types of nodes on online social network. Simulation results show that information can spread easily on the online social network because of the good connectivity. The greater the degree of the initial spread node, the faster the information spreads on online social network. Center nodes have great social influence, and the nodes with different degrees have the similar trend on online social network. Research shows that the model, having the same characteristics with online social network, contributes to a more profound understanding of information dissemination behavior on online social network.

Publisher

Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences

Subject

General Physics and Astronomy

Reference19 articles.

1. Hu H B, Wang X F 2009 Phys. Lett. A 37 1105

2. Song X D, Lin C Y, Tseng B L, Sun M T 2005 International Conference on Knowledge Discovery and Data Mining, Proceedings of the eleventh ACM SIGKDD international conference on Knowledge discovery in data mining, Chicago, Illinois, USA, August 21—24, 2005, 2005 p479

3. Hu H B, Han D Y, Wang X F 2010 Physica A 389 1065

4. Kumar R, Novak J, Tomkins A 2006 International Conference on Knowledge Discovery and Data Mining, Proceedings of the 12th ACM SIGKDD international conference on Knowledge discovery and data mining, Philadelphia, PA, USA, August 20—23, 2006 p611

5. Mislove A, Marcon M, Gummad K P 2007 Internet Measurement Conference, Proceedings of the 7th ACM SIGCOMM conference on Internet measurement, San Diego, California, USA, October 24—26, 2007 p29

Cited by 56 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3