Author:
Chen Di-Yi ,Shen Tao ,Ma Xiao-Yi ,
Abstract
In order to eliminate lateral oscillation of spinning disk with uncertain parameter and dispel their adverse effect on the system performance or the working conditions of the system, supposing that the point force acting on the spinning disk is uncertain and bounded, the chaotic complex dynamic characteristics of the four-dimensional nonlinear equations in lateral oscillations of spinning disk under bounded disturbance were analyzed in view of the ubiquity of disturbance, including the space trajectory, the Lyapunov exponent and the Poincaré map. These characteristics enable us to know them deeply, and indicate that the four-dimensional dynamical system contains chaotic attractor. To ensure the robustness of the system control, the author stabilized the chaotic orbits to arbitrary chosen fixed points and periodic orbits by means of sliding mode method, and MATLAB simulations were presented to confirm the validity of the controller. The results show that using sliding mode method can make the system track target orbit strictly and smoothly with short transition time, and its insensitivity to noise disturbance is shown. It provides reference for relevant chaos control in mechanical system.
Publisher
Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences
Subject
General Physics and Astronomy
Cited by
9 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献