Author:
Gao Yuan ,Liu Zhan-Li ,Zhao Xue-Chuan ,Zhang Zhao-Hui ,Zhuang Zhuo ,You Xiao-Chuan ,
Abstract
Dislocation climb plays a vital role in the plastic behavior of crystals at high temperatures. In order to reveal the intrinsic mechanism of climb and its effect on plasticity, a new dislocation climb model is first developed based on the combination of the diffusion theory with both bulk diffusion and pipe diffusion in a three-dimensional discrete dislocation dynamics (DDD) simulation, which is considered to be more physical and widely applicable. Using our model the shrinkage processes of a single prismatic loop group and prismatic loop group are simulated. It is concluded that the climb rate is not directly determined by mechanical climb force as believed in classical theories, but by the gradient of the vacancy concentration around (bulk diffusion) and along (pipe diffusion) the dislocation line. Loop coarsening process is also simulated, and the three pronounced evolving stages of the loop radii and the average vacancy concentrations in crystal are reproduced.
Publisher
Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences
Subject
General Physics and Astronomy
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献