Comparison between gradient-doping and uniform-doping GaN photocathodes

Author:

Du Xiao-Qing ,Wang Xiao-Hui ,Chang Ben-Kang ,Qian Yun-Sheng ,Gao Pin ,Zhang Yi-Jun ,Guo Xiang-Yang ,

Abstract

In order to enhance the quantum efficiencies of negative electron affinity (NEA) GaN photocathodes, gradient-doping reflection-mode GaN photocathodes are grown by metal organic chemical vapor deposition (MOCVD)at doping concentrations of 1×1018cm-3, 4×1017cm-3, 2×1017cm-3 and 6×1016cm-3 from the body to the surface, with the thickness of each doping region being about 45nm and the total thickness of GaN 180 nm. The gradient-doping GaN photocathodes are activated in an ultra-high vacuum system and are compared with two kinds of uniform-doping GaN photocathodes whose thicknesses are both 150 nm and doping concentrations are 1.6×1017cm-3 and 3×1018cm-3 separately. The results show that both the photocurrent growth rate and the maximum photocurrent of the gradient-doping GaN photocathodes are greater than those of the uniform-doping GaN in the Cs/O activation process, and the multi-test system measured maximum quantum efficiency of the gradient-doping NEA GaN photocathode is about 56% which is as high as the double of the uniform-doping. Calculations show that the energy band bendings of the gradient-doping GaN photocathodes are 0.024eV, 0.018eV and 0.031eV from the body to the surface, a larger electron drift and diffusion length are gained due to the built-in electric field formed by the energy band bending, because of the 0.073eV total energy band bending the photoelectrons reaching the surface have higher energies and pass through the surface barrier more easily. Therefore the gradient-doping NEA GaN photocathodes have greater quantum efficiencies.

Publisher

Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences

Subject

General Physics and Astronomy

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3