A nuclear micro-battery based on silicon PIN diode

Author:

Qiao Da-Yong ,Chen Xue-Jiao ,Ren Yong ,Zang Bo ,Yuan Wei-Zheng ,

Abstract

Due to the use of heavily doped N type silicon substrate, the nuclear micro-battery based on silicon PN diode suffers from the small minority carrier life-time and small depletion region width, and can not achieve high energy transfer efficiency. A nuclear micro-battery utilizing silicon PIN diode as the energy transfer structure was demonstrated with achieves higher electrical power output. Theoretical model was built to predict the power output performance of this kind of micro-nuclear battery and structure optimization was performed in terms of the stopping range of beta particles, the depletion region width, the minority carrier life-time and the body resistance. Prototypes of PIN energy transfer structure were fabricated and were illuminated by using beta radioisotopes 63Ni,147Pm and alpha radioisotope 241Am as the radiation sources, and proved to be effective to improve the energy transfer performance.

Publisher

Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences

Subject

General Physics and Astronomy

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Preparation and performance optimization of CdTe-based betavoltaic transducer devices;Optical Materials;2022-11

2. Review—Betavoltaic Cell: The Past, Present, and Future;ECS Journal of Solid State Science and Technology;2021-02-01

3. Simulation and Optimization Design of SiC-Based PN Betavoltaic Microbattery Using Tritium Source;Crystals;2020-02-12

4. Model and optimal design of 147Pm SiC-based betavoltaic cell;Superlattices and Microstructures;2018-11

5. GaAs radiovoltaic cell enhanced by Y 2 SiO 5 crystal for the development of new gamma microbatteries;Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms;2017-05

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3