Author:
Ma Wen ,Zhu Wen-Jun ,Zhang Ya-Lin ,Jing Fu-Qian ,
Abstract
The shock-induced phase transformation of nanocrystalline iron with different grain sizes is investigated by using molecular dynamic simulations. The critical shock stress for shock-induced phase transformation (from body-cubic centered α phase into hexagonal-close packed ε phase) of nanocrystalline irons is about 15 GPa. Under shock compression, the nanocrystalline irons first experience elastic deformation, then plastic deformation purely caused by grain boundaries, after that phase transformation nucleated mostly at the grain boundaries, and finally nucleation areas expanding into the entire samples. These processes can be reflected by the stress profile and the particle velocity profile, and also be distinguished by local atomic structures analyses in the corresponding areas. The microstructures of the shocked samples consist of grain boundary and hexagonal-closed packed new phase with the face-cubic centered atoms as the twin boundary. The grain size obviously influences the deformation of grain boundary and the microstructure after shock compression, and turns to change the profiles of stress or velocity. The mechanism is primarily analyzed.
Publisher
Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences
Subject
General Physics and Astronomy
Reference19 articles.
1. Bancroft D, Peterson E L, Minshall S 1956 J. Appl. Phys. 27 291
2. Asay J R, Chhabildas L C 2003 High-Pressure Shock Compression of Solids Ⅵ edited by Horie Y, Davison L, Thadhani N N (New York: Springer)
3. Kalantar D H, Belak J F, Collins G W, Colvin J D, Davies H M, Eggert J H, Germann T C, Hawreliak J, Holian B L, Kadau K, Lomdahl P S, Lorenzana H E, Meyers M A, Rosolankova K, Schneider M S, Sheppard J, Stölken J S, Wark J S 2005 Phys. Rev. Lett. 95 075502
4. Kadau K, Germann T C, Lomdahl P S, Albers R C, Wark J S, Higginbotham A, Holian B L 2007 Phys. Rev. Lett. 98 135701
5. Kadau K, Germann T C, Lomdahl P S, Holian B L 2002 Science 296 1681
Cited by
9 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献