Biot-Savart law and the formation mechanism of Somali low-level jet

Author:

Feng Shi-De ,Feng Tao ,

Abstract

Firstly, we investigate the impact of cross-equatorial Somali low-level jet on the atmospheric circulation in the east of Tibet Plateau using lattice Boltzmann model simulation. Secondly, we study the relationship between thermal conditions on the bottom boundary and the formation of Somali jet based on Biot-Savart law using the data from National Centres for Environmental Prediction (NCEP). As the radiation from the Sun gradually moves from the southern meridian, the temperature on the ground surface of Somali Peninsular and Arabic Peninsular gradually increases. During the same period the surface temperature of the Northern Indian Ocean increases much slower. It is shown that this increase in the temperature difference between the land and sea is inductive to the formation and development of Rayleigh-Benard convection and leads to the increasing relative vorticity strength between positive and negative vertical vortices over the land and sea. According to Biot-Savart law, the increase in vorticity strength will induce correspondingly a large horizontal velocity. The pair of positive and negative vorticity fields over the two Peninsulars and the sea surface is effective in forming and maintaining this current. This mechanism is referred to as "Somali suction pump". It draws air continually from the Southern hemisphere and releases it at the coastal area of Somali.

Publisher

Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences

Subject

General Physics and Astronomy

Reference17 articles.

1. Li X Z 1955 Modern Scientific Work in China—Meteorology (1919—1949) (Beijing: science press)p35 (in Chinese) [李宪之 1955 中国近代科学论著——气象学(1919—1949) (北京:科学出版社)第35页]

2. Zeng Q C, Li J P 2002 Chinese Journal of Atmospheric Science 26 433 (in Chinese)[曾庆存、李建平 2002 大气科学 26 433]

3. Bunker A F 1965 Proceedings of the Symposium on Meteorological Results of the International Indian Ocean Expedition (New Delhi: India Meteorological Department) p3

4. Findlater J 1966 Met. Mug. 95 353

5. Findlater J 1969 Q. J. Roy. Meteoro. Soc. 95 91

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3