Ballistic phonon transport and thermal conductance in multi-channel quantum structure at low temperatures

Author:

Ye Fu-Qiu ,Li Ke-Min ,Peng Xiao-Fang ,

Abstract

By using the elastic approximation model and scattering matrix method, we investigated the acoustic phonons transport and thermal conductance in a H-branch four-channel nanostructure. The calculated results show that, for the incident acoustic phonons of low frequency, as long as the transverse width of each channel is equal, the transmission coefficient of mode 0 in each channel almost equals 0.25 and receives no influence from the changes of the other structure parameters. But for the incident acoustic phonons of high frequency, the transmission coefficient of mode 0 in each channel is very sensitive to the structure parameters and there is bigger difference corresponding to the transmission coefficients of different channels. When the temperature is very low, the thermal conductance in each channel is about 1 4 π2k2BT/(3h). With the increase of temperature, the thermal conductance of each channel changes to different degrees. By changing the length of scattering region or the transverse width of each channel, we can control the separating degree of modes and the thermal conductance of each channel efficiently and realize acoustic phonon selective transport and thermal conduction.

Publisher

Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences

Subject

General Physics and Astronomy

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3