Propagation properties of a surface plasmonicwaveguide with a bowtie air cores

Author:

Jia Zhi-Xin ,Duan Xin ,Lü Ting-Ting ,Guo Ya-Nan ,Xue Wen-Rui ,

Abstract

A kind of surface plasmonic waveguide with a bowtie shaped air core was designed. The dependence of distribution of longitudinal energy flux density, effective index and propagation length of the fundamental mode supported by this waveguide on geometrical parameters and working wavelength were analyzed using the finite-difference frequency-domain (FDFD) method. Results show that the longitudinal energy flux density distributes mainly in the center region which is formed by the top and the bottom ridge. The effective index and propagation length of the fundamental mode can be adjusted by the geometric parameters as well as the working wavelength. At a given working wavelength, the effective index decreases as the radius of ridge increases, meanwhile propagation length and mode area of the fundamental mode increase as radius of ridge increases. The geometric parameter of radius of circles at four corner can affect the propagation properties slightly. The radius of sectors on both sides can effect propagation properties obviously. With given geometric parameters, relative to the case of λ=705.0 nm, in the case of larger λ, the area of field distribution is larger, and the size of the contact area of field and metallic surface is also larger, then the interaction of field and silver is weaker, and the effective index becomes smaller, so the propagation length becomes larger. The possibility of applying this kind of surface plasmonic waveguide to the field of sensors was discussed.

Publisher

Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences

Subject

General Physics and Astronomy

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3