Preparation of Fe-based thick amorphous composite

Author:

Abstract

A thick Fe-based amorphous composite coating (1—5mm) was prepared in situ by tungsten inert gas (TIG) cladding method. The auxiliary cooling system was used to improve the solidification rate of molten alloy and decrease the dilution from the substrates. The microstructure of the composite coating was investigated by X-ray differaction, optical microscope and transmission electron microscope. In addition, the micro-hardness of the coating was also measured. The results show that the composite coating is composed of the amorphous phase and the nano-crystalline grains encapsulated by amorphous transition layer, whose content is more than 50 percent. The composite coatings have been found to have good bonding strength and high wear resistance, the maximum value of the micro-hardness is up to 1600HV0.3. The microstructure of the transition layer with good elastic-plastic properties leads to the higher impact resistance. At last, the relations between the microstructure and micro-hardness properties were discussed in detail, and the main reason for high hardness is the cooperation of the amorphous phase and nano-crystalline phase in the composite coatings.

Publisher

Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences

Subject

General Physics and Astronomy

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3