The analysis of effects and theories for electromagnetic hydrodynamics propulsion by surface

Author:

Liu Zong-Kai ,Zhou Ben-Mou ,Liu Hui-Xing ,Liu Zhi-Gang ,Huang Yi-Fei ,

Abstract

The electromagnetic hydrodynamics(EMHD) propulsion by surface is performed through the reaction of electromagnetic body force, which is induced in conductive flow fluid (such as seawater, plasma and so on) around the propulsion unit. Based on the basic governing equations of electromagnetic field and hydrodynamics, by numerical simulations obtained by the finite volume method, the characteristics of flow field structures near the navigating and the strength variation of propulsion force are investigated at varying positions (the angle of attack). The results show that surface electromagnetic body force can modify the structure and the input energy of flow boundary layer, which enables the navigation to obtain the thrust. With the increase of interaction parameter the effect of viscous resistance and pressure drag to navigating decrease and the nonlinear relationship between propulsion coefficient and interaction parameter tends to be linear gradually. The strength of propulsion force depends mainly on the electromagnetic body force. The lift force can be improved effectively through the EMHD propulsion by surface at an angle of attack for navigating. The navigating surface can be designed as working space of propulsion units, which is of certain significance for optimizing the whole struction and improving the efficiency.

Publisher

Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences

Subject

General Physics and Astronomy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3