Theoretical and experimental studies on ultra-broad-bandwavelength tunableness by optical soliton mechanism

Author:

Zhu Qi-Hua ,Zhou Shou-Huan ,Zhao Lei ,Zeng Xiao-Ming ,Huang Zheng ,Zhou Kai-Nan ,Wang Xiao ,Huang Xiao-Jun ,Feng Guo-Ying , ,

Abstract

It is crucial but challengeable that the generation of optical exact by synchronized seed pulses both for the main amplifier chain and for the pump-laser chain of an optical parametric chirped pulse amplification system, which are tried to be developed by the soliton mechanism. Detailed numerical simulation of the soliton propagation mechanism are accomplished. So the evolutions of solitons in time-domain and frequency-domain as well as the reciprocity characteristic with other nonlinear effects are clarified. Experiments are carried out, for validating the method of using soliton mechanism to generate ultra-broad band tunable ultra-short laser pulses. Forming, breaking up and self-frequency shift of a soliton are observed. The favorable tunablenesses of the wavelength between the visible and the near-infrared regions are exhibited. All these experimental results are well consistent with the theoretical analyses.

Publisher

Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences

Subject

General Physics and Astronomy

Reference33 articles.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3