Entanglement entropy of the Gibbons-Maeda dilaton black hole

Author:

Liu Cheng-Zhou ,Zhao Zheng ,

Abstract

By using the entanglement entropy method, in the Gibbons-Maeda(G-M) dilaton space-time, the statistical entropy of the quantum field in a thin film is calculated and the Bekenstein-Hawking entropy of the G-M dilaton black hole is obtained.Here, the quantum field is entangled with the quantum states in the black hole and the thin film sticks to the event horizon from outskirt of the black hole.Taking into account the effect of the generalized uncertainty principle on the quantum state density, the difficulty of the divergence of the state density near the event horizon in the brick-wall model is removed.Calculating the statistical entropy of the degrees of freedom entangling to the quantum states in the black hole in the quantum field outside the brick-wall and comparing the result to the entropy from the degrees of freedom inside brick-wall, we see that the two results are consistent but the latter may embody preferably the essence of black hole entropy.Using the residue theorem, the integration difficulty in he calculation is overcome and the result of the paper is founded quantitatively. These calculation and discussion imply that the high density quantum states near the event horizon are strongly correlated with the quantum states in black hole and the ultraviolet cut-off in the brick-wall model is not reasonable. The quantization of gravity field should be considered in the high energy quantum field near the event horizon and the ultraviolet cut-off is not necessary. In the quantum field inside and outside the brick-wall, the degrees of freedom contributing to the black hole entropy are just those correlating with the degrees of freedom in the black hole.

Publisher

Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences

Subject

General Physics and Astronomy

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3