Study of cisplatin-induced DNA compaction using single molecule magnetic tweezers
-
Published:2009
Issue:6
Volume:58
Page:4301
-
ISSN:1000-3290
-
Container-title:Acta Physica Sinica
-
language:
-
Short-container-title:Acta Phys. Sin.
Author:
Zhang Xing-Hua ,Xiao Bin ,Hou Xi-Miao ,Xu Chun-Hua ,Wang Peng-Ye ,Li Ming ,
Abstract
We report a single molecule study on cisplatin-induced DNA compaction. It is found that, at a small external tension (<1 pN), the DNA compaction time course is irregular with many continuous shortening processes and abrupt large size jumps. The time course becomes smooth and hyperbolic when the external tension increases to a moderate value, which is not large enough to inhibit the compaction. The time course depends on the external tension rather than the concentration of cisplatin; the latter only influences the compaction rate. The results are consistent with a looping-and-cross-linking compaction model. Namely, in aqueous solutions, cisplatin forms both monoadducts and diadducts with DNA. When cisplatin induces distant cross-links between DNA bases, micro-loops are formed, which make DNA compact. Further cross-linking between the micro-loops leads to complete compaction of DNA. In addition, the compacted DNA structure is quite stable.
Publisher
Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences
Subject
General Physics and Astronomy
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献