Numerical simulation of the near-field distribution of light spot of aperture pyramid-type optical probe with a metal tip

Author:

Wang Guo-Jun ,Wu Shi-Fa ,Li Xu-Feng ,Li Rui ,Duan Jian-Min ,Pan Shi ,

Abstract

The finite-difference time-domain method (FDTD) is employed to investigate the near-field distribution of the light spot of aperture pyramid-type optical probe with a metal tip. The factors that have some influence on the electric field distribution such as the length,radius and position departed from aperture of the tip are investigated. The mechanism of electromagnetic wave transmitting from the aperture to metal tip by way of plasmon is discussed. Our calculation results are consistent with the results obtained by Taminiau with different methods. How and why Pohl etc. have obtained images with high resolution in the 20—25 nm range between 1984 and 1986 are analyzed. The imaging mechanism of their experiment system is discussed. Numerical simulation demonstrates that the imaging mechanism of Pohls experiment system may belong to a scattering-type near-field optical microscope (S-SNOM) rather than an aperture scanning near-field optical microscope (A-SNOM). This paper can help us to find optimized tip design in the future.

Publisher

Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences

Subject

General Physics and Astronomy

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3