Effect of deposition rate on the scaling behavior of microcrystalline silicon films prepared by very high frequency-plasma enhanced chemical vapor deposition

Author:

Ding Yan-Li ,Zhu Zhi-Li ,Gu Jin-Hua ,Shi Xin-Wei ,Yang Shi-E ,Gao Xiao-Yong ,Chen Yong-Sheng ,Lu Jing-Xiao ,

Abstract

Three sets of hydrogenated microcrystalline silicon (μc-Si:H) films for different deposition time were prepared by very high frequency-plasma enhanced chemical vapor deposition with different deposition rates. The surface roughness evolution of μc-Si:H has been investigated using spectroscopic ellipsometry. For films with the deposition rate of 0.08 nm/s and 0.24 nm/s, the surface roughness of films changes a little, and the growth exponent β is about 0.20. Similar β values ascribed to the adatoms have enough time to move to the site with lower energy under lower deposition rate. However, when the deposition rate increases to 0.66 nm/s, the surface roughness of films increases obviously, and the exponent β is about 0.81, which is much higher than 0.5 for zero diffusion limit in the scaling theory. The growth mode of high-rate deposited μc-Si:H is clearly different from that of lower-rate deposited μc-Si:H. This is due to the fact that the adatoms have no enough time to diffuse before being covered by the radicals of the next layer under high deposition rate, which decreases the surface diffusion of the adatom, and therefore increases the film surface roughening which results in a larger β. The case of β>0.5 is related to the shadowing effect.

Publisher

Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences

Subject

General Physics and Astronomy

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3