Simulation analysis of micro-ring resonator based on diamond multilayer waveguide structure

Author:

Li Zhi-Quan ,Bai Lan-Di ,Gu Er-Dan ,Xie Rui-Jie ,Liu Tong-Lei ,Niu Li-Yong ,Feng Dan-Dan ,Yue Zhong ,

Abstract

With the development of the technology for fabricating high-quality synthetic diamond and diamond waveguide structures, more and more researchers are being involved in exploring the particular optical properties of diamond for different applications. Because of its high refractive index and nontoxicity to biological species, diamond can be used to make micro-ring resonator to detect the concentration of liquid or gas. In this paper, a single micro-ring resonator model with diamond serving as the core layer is proposed. In the model, the vertical-section of the waveguide adopts a five-layer ridge-type waveguide structure based on As2S3, SiO2 and diamond, i.e. As2S3-SiO2-Diamond-SiO2-As2S3. To investigate the optical properties of the resonator, the vertical-section of the single straight waveguide, the coupling region of the direct waveguide, and the ring waveguide are simulated with the adopted operating wavelength =1550 nm based on the coupling mode theory and micro-ring resonance theory. In addition, the distribution of the field strength for the micro-ring is described at a resonant wavelength of 1543 nm. It is very important to explore the field intensity distribution of the micro-ring for understanding how the light transmits. The transmission characteristics of the micro-ring with the change of the distance between the straight waveguide and the ring waveguide in the coupling region are also simulated. The quality factor and the influence of the coupling coefficient change on the output spectrum are studied by the transfer matrix method and the micro-ring loss is discussed. It is shown that the micro-ring resonator designed with the diamond material has good transmission characteristics. When the resonant wavelength is 1543 nm, the resonant peak reaches more than -12 dB. The quality factor is about 1.54105. When the coupling coefficient k is 0.01, the free spectral range is about 40 nm. The coupling coefficient k is determined by the distance S of the coupling region. The results show that when S is equal to 50 nm, the output spectrum has a good extinction ratio and is better compared with the other values. The error of material processing is mainly affected by size, so the output spectrum near the distance S=50 nm is studied. The result shows that in the tiny change scope, the spectral output peak is linearly related to S. The structure we suggested in this paper expands the application scope of diamond in the field of optics, and provides some guiding significance for developing the optical integrated chips.

Publisher

Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences

Subject

General Physics and Astronomy

Reference19 articles.

1. Chin M K, Ho S T 1998 J. Lightwave Technol. 16 1433

2. Hong J X, Liu Y, Chen W 2014 J. Optoelectr. Laser 25 1668 (in Chinese)[洪建勋, 刘莹, 陈伟2014光电子激光25 1668]

3. Dong P, Shafiiha R, Liao S, Liang H, Feng N N, Feng D Z, Li G L, Zheng X Z, Krishnamoorthy A V, Khiavi M A 2010 Opt. Express 18 10941

4. Wang W, Zhang A H, Yang K, Yang L J, Feng S J, Wang Z 2013 Infrared Laser Eng. 42 2162 (in Chinese)[王巍, 张爱华, 杨铿, 杨丽君, 冯世娟, 王振2013红外与激光工程42 2162]

5. Tian H, Zhang Y D, Qi D W, Su R Z, Bai Y, Xu Q 2016 Chin. Phys. B 25 064204

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3