Fabrication and electrical engineering of graphene nanoribbons

Author:

Zhang Hui ,Cai Xiao-Ming ,Hao Zhen-Liang ,Ruan Zi-Lin ,Lu Jian-Chen ,Cai Jin-Ming , ,

Abstract

Graphene, as a typical representative of advanced materials, exhibits excellent electronical properties due to its unique and unusual crystal structure. The valence band and conduction band of pristine graphene meet at the corners of the Brillouin zone, leading to a half-metal material with zero bandgap. However, although the extraordinary electronical properties make graphene possess excellent electrical conductivity, it also restricts its applications in electronic devices, which usually needs an appropriate bandgap. Therefore, opening and tuning the bandgap of graphene has aroused great scientific interest. To date, many efforts have been made to open the bandgap of graphene, including defects, strain, doping, surface adsorptions, structure tunning, etc. Among these methods, graphene nanoribbon, the quasi-one-dimensional strips of graphene with finite width ( 10 nm) and high aspect ratios, possesses a band gap opening at the Dirac point due to the quantum confinement effects. Thus, graphene nanoribbon has been considered as one of the most promising candidates for the future electronic devices due to its unique electronic and magnetic properties. Specifically, the band gap of graphene nanoribbons is strongly dependent on the lateral size and the edge geometry, which has attracted tremendous attention. Furthermore, it has been reported that armchair graphene nanoribbons possess gaps inversely proportional to their width, and numerous efforts have been devoted to fabricating the graphene nanoribbons with different widths by top-down or bottom-up approaches. Moreover, based on the on-surface reaction, the bottom-up approach shows the capability of controlling the width and edge structures, and it is almost contamination-free processing, which is suitable to performing further characterizations. Ultra-high-vacuum scanning tunneling microscope is a valid tool to fabricate and characterize the graphene nanorribons, and it can also obtain the band structure information when combined with the scanning tunneling spectroscopy. Taking the advantage of the bottom-up synthetic technique, the nearly perfect graphene nanoribbons can be fabricated based on the organic molecule reaction on surface, which is a promising strategy to study the original electronic properties. To precisely tuning the band engineering of graphene nanoribbons, the researchers have adopted various effective methods, such as changing the widths and topological morphologies of graphene nanoribbons, doping the graphene nanoribbons with heteroatoms, fabricating the heterojunctions under a controlable condition. The precise control of graphene synthesis is therefore crucial for probing their fundamental physical properties. Here we highlight the methods of fabricating the graphene nanoribbons and the precise tuning of graphene bandgap structure in order to provide a feasible way to put them into application.

Publisher

Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences

Subject

General Physics and Astronomy

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3