Author:
Zhao Li-Mei ,Zhang Guo-Feng ,
Abstract
Recently, the influences of the Dzyaloshinski-Moriya (DM) interaction on the performances of the basic thermo-dynamical quantities have attracted a lot of attention. A large number of investigations on the quantum coupling systems with DM interaction have been carried out. However, the specific effects of spin-orbit coupling with the performance on the quantum heat engine have not been taken into account in previous studies. DM interaction is a special kind spin-orbit coupling. To enrich the research of the quantum heat engines, the investigation about the effect of DM interaction on its thermodynamic characteristics should be included. In this study, we construct two entangled quantum engines based on spin-1/2 systems with different DM interactions, with the spin exchange constant and magnetic field fixed. The quantum Otto engine and the quantum Stirling engine are discussed in this article. By numerical calculation, we obtain the expressions for several thermodynamic quantities and plot the isoline maps of the variation of the basic thermodynamic quantities such as heat transfer, work with D1 and D2 and their efficiency in the two engines. The results indicate that the DM interaction plays an important role in the thermodynamic quantities for the quantum Otto engine and the quantum Stirling engine. In addition, the positive work condition is discussed with different DM interactions, with the spin exchange constant and magnetic field. Furthermore fixed, it is found that the efficiency of quantum Otto engine cycle is smaller than the Carnot efficiency while the quantum Stirling cycle can exceed the Carnot efficiency by using the regenerator. Finally, the second law of thermodynamics is shown to be valid in the two entangled quantum systems.
Publisher
Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences
Subject
General Physics and Astronomy
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献