The study on the mechanism of liquid surface in interior corner and the applicability of Surface Evolver

Author:

Xu Sheng-Hua ,Wang Lin-Wei ,Sun Zhi-Wei ,Wang Cai-Xia ,

Abstract

The study on the fluid behavior under microgravity condition is of great importance for the investigation of the fluid behavior caused by surface tension, the prediction and control of the liquid location at microgravity, the fluid management in space, etc. In this study, we analyze the relationship between the contact angle and the direction of the contact line in interior corner of container, and compare it with the Concus-Finn theory. The mechanism of mutual correlation among the direction of contact line, the contact angle and the geometric shape of container, and the physical meaning of relevant theory by Concus and Finn etc. are also analyzed. By comparing the theoretical results with the numerical results calculated by Surface Evolver, we find that the Surface Evolver program can predict the contact line and the liquid surface in interior corner with angle smaller than 180°, simply by the automatically partitioned grid. However, when the angle of the interior corner is larger than 180°, the results given by Surface Evolver can have a remarkable error with the automatically partitioned grid. In order to reduce the error, it is necessary to manually partition the surface to reduce the singularity of grid. And the results from Surface Evolver should be tested quantitatively at the interior corners for complicated containers. The theoretical analysis and the numerical results calculated by Surface Evolver in this study will be helpful for understanding the characteristics and mechanism of liquid surface in interior corner, choosing the applicable parameters for Surface Evolver program, and the future study on the behavior of liquid in interior corner, especially under microgravity condition.

Publisher

Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences

Subject

General Physics and Astronomy

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3