Morphology control of gold nanoparticles on glass surface realized by electric field assisted dissolution method

Author:

Zou Zhi-Yu ,Liu Xiao-Fang ,Zeng Min ,Yang Bai ,Yu Rong-Hai ,Jiang He ,Tang Rui-He ,Wu Zhang-Ben , ,

Abstract

Noble metal nanoparticles have potential applications in photonics, catalysis, and bio-labeling, owing to their much unique optical properties and surface activities. Monodisperse spherical Au nanoparticles with sizes in a range of about 60-80 nm are formed on the glass surfaces via ion sputtering and follow-up heat treatment. At an appropriate temperature, the electric field assisted dissolution process of Au nanoparticles is realized by the strong direct current electric field in step-like feature. In the different color areas of glass surface, it can be found that the original spherical Au nanoparticles are dissolved into the particles with the shape of a lunar eclipse. From surface plasmon resonance absorption properties and scattering electron microscopy images of Au nanoparticles in the different color areas, the influence of experimental condition on property of gold nanoparticle is demonstrated. From the current-voltage characteristics in electric field assisted dissolution experimental process, the physical process of Au nanoparticle dissolution under strong direct current electric field is analysed: the tunneling process of ejected electrons from Au particles to the anode starts, then followed by transfer process of Au cations to the glass matrix and the combination process of electrons from cathode with a positive charge Au particles. The physical mechanism of morphology control of Au nanoparticles realized by electric field assisted dissolution method is discussed in detail.

Publisher

Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences

Subject

General Physics and Astronomy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3