Author:
Yuan Qiang ,Wei Xiao-Feng ,Zhang Xiao-Min ,Zhang Xin ,Zhao Jun-Pu ,Huang Wen-Hui ,Hu Dong-Xia , ,
Abstract
Shock ignition is a new concept for assembling and igniting thermonuclear fuel, in which compressed fusion fuel is separately ignited by a strong convergent shock launched in the target at the end of compression phase by a final intense laser pulse. Because of compression and ignition decoupling, target implosion velocities are significantly lower than those required for conventional hotspot ignition. As a result, shock ignition has the advantages of a low ignition energy threshold, high gain and good hydrodynamic stability properties. It offers a possibility for a high gain inertial confinement fusion to be used as green energy in the future, and could be tested on the projecting indirect drive laser fusion facilities like Shenguang-III facility (SG-III) in China. In this paper, we present the requirements for laser system used for shock ignition, delineate the critical issues and describe the research and development program that must be performed in order to test the high gain shock ignition in the future term.
Publisher
Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences
Subject
General Physics and Astronomy
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献