First-principles study of interface relaxation effects on interface structure, band structure and optical property of InAs/GaSb superlattices

Author:

Sun Wei-Feng ,Zheng Xiao-Xia , ,

Abstract

The first-principles all electron relativistic calculations within the general gradient approximation are performed to investigate the interface structure, the electronic and the optical absorption properties of quaternary InAs/GaSb superlattices with InSb or GaAs type of interface. Because of the complexity and low symmetry of the quaternary interfaces, the equilibrium structural parameters of relaxed interfaces are determined by the minimization of total electronic energy and strain in InAs/GaSb superlattices. The band structures and the optical absorption spectra of InAs/GaSb superlattices with special InSb or GaAs and normal (two types are alternate) interfaces are calculated, with the consideration of the superlattice interface atomic relaxation effects. The calculation of relativistic Hartree-Fock functional and local density approximation with the plane wave method is also implemented to demonstrate the calculated band structure results. The calculated band structures of InAs/GaSb superlattices with different types of interfaces are systematically compared. We find that the chemical bonding and ionicity of interfacial Sb atoms are essentially important in determining the interface structures, the band structures and the optical properties of InAs/GaSb superlattices.

Publisher

Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences

Subject

General Physics and Astronomy

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3