Properties and order-disorder competition of spin-1/2 XY model in the ferrimagnetic diamond chain

Author:

Cheng Tai-Min ,Ge Chong-Yuan ,Sun Shu-Sheng ,Jia Wei-Ye ,Li Lin ,Zhu Lin ,Ma Yan-Ming , , ,

Abstract

The elementary excitation spectra of the one-dimensional spin-1/2 XY model in the ferrimagnetic diamond chain at low temperature are calculated by using invariant eigenvector in this paper. And the elementary excitation energies in different cases are discussed. Therefore, analytic solutions of the three critical magnetic field intensities HC1, HC2 and Hpeak in the system are given. It is found that the analytic solutions of three critical magnetic field intensities are correct from the law of the magnetization changing with temperature under different external magnetic fields, and it is explained by the contributions of the three elementary excitations to the magnetization. The external magnetic field dependent magnetization presents a 1/3 magnetized plateau at low temperature. The variation of magnetic susceptibility either with temperature or with external magnetic field shows a double peak structure, this phenomenon indicates that the double peak structure originates from the competition among the ferromagnetic exchange interaction energy of intramolecular electronic spin parallel arrangement in dimer, the antiferromagnetic exchange interaction energy of intermolecular electronic spin antiparallel arrangement in dimer-monomer, the thermal disorder energy and the spin magnetic moment potential energy related to external magnetic field.

Publisher

Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences

Subject

General Physics and Astronomy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3