Calibration of velocity map imaging system and photodissociation dynamics of 1, 4-C4H8BrCl

Author:

Liu Yu-Zhu ,Xiao Shao-Rong ,Zhang Cheng-Yi ,Zheng Gai-Ge ,Chen Yun-Yun , ,

Abstract

Depletion of atmospheric ozone layers is more and more serious. Alkyl halides dissociate under the solar UV radiation with the product of free halogen atoms, which greatly damages the ozone layer and is the main culprit for the depletion of ozone layers. In this paper, methyl iodide is chosen as a calibration system of velocity map imaging. Velocity map images of iodine atom I (2P3/2) at different focus voltages are obtained in the dissociation of methyl iodine under an UV radiation of ~266 nm by techniques of velocity map imaging and REMPI (Resonance Enhanced Multiphoton Ionization). The magnification factor N of velocity map imaging system is measured to be 1.13. Photodissociation dynamics of 1, 4-C4H8BrCl under an UV radiation of ~234 nm is investigated on this velocity map imaging system. The speed and angular distributions of the fragments Br(2P3/2) and Br* (2P1/2) atoms in the dissociation are obtained and analyzed. Experimental results suggest that the dissociation of 1, 4-C4H8BrCl to both Br(2P3/2) and Br* (2P1/2) atoms under an UV radiation of ~234 nm happens promptly along the C-Br bond via repulsive surfaces after excitation. The anisotropy coefficient values are obtained from angular distributions of imaging of the fragments Br (2P3/2) and Br* (2P1/2) atoms, by which the ratio between perpendicular transition and parallel transition for those two dissociation channels are calculated. In addition, photodissociation mechanisms of CH2BrCl, 1, 2-C2H4BrCl, 1, 3-C3H6BrCl and 1, 4-C4H8BrCl at an UV radiation of ~234 nm are compared, and the dependences of dissociation mechanisms of dihalogen alkyl compounds on size of the alkyl radical are obtained.

Publisher

Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences

Subject

General Physics and Astronomy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3