Estimating topology of complex networks based on sparse Bayesian learning

Author:

Hao Chong-Qing ,Wang Jiang ,Deng Bin ,Wei Xi-Le ,

Abstract

We propose a method of estimating complex network topology with a noisy environment. Our method can estimate not only dynamical equation of the chaotic system and its parameters but also topology, the dynamical equation of each node, all the parameters, coupling direction and coupling strength of complex dynamical network composed of coupled unknown chaotic systems using only noisy time series. Estimating the system structure and parameter is regard as estimating the linear regression coefficients by reconstructing system with universal polynomial structure. Reconstruction algorithm of Bayesian compressive sensing is used for estimating the coefficients of regression polynomial. For the reconstruction from noisy time series we adopt relevance vector machine, namely we use sparse Bayesian learning to solve sparse undetermined linear equation to obtain the objects mentioned above. The Lorenz system and a scale free network composed of 200 Lorenz systems are provided to illustrate the efficiency. Simulation results show that our method improves the robust to noise compared with the compressive sensing and has fast convergence speed and tiny steady state error compared with the least square strategy.

Publisher

Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences

Subject

General Physics and Astronomy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3