Enhancing photovoltaic effect of Co2-C98/Al2O3/Si heterostructures by Al2O3

Author:

Zhang Xin ,Zhang Xiao-Zhong ,Tan Xin-Yu ,Yu Yi ,Wan Cai-Hua , , ,

Abstract

As energy crisis is aggravated, solar cell, as a common form of the development and utilization of solar energy, has attracted more and more attention all over the world. With solar cells developing towards the direction of high efficiency, thin film, non-toxic and rich raw materials, the pure silicon solar cell could not meet these requirements, so the new material and process are imminently required. This paper deals with the photovoltaic effect of the carbon material based on the silicon heterostructure, and its possible application to solar cells. Co2-C98/Al2O3/Si heterostructure with a 4 nm-thick Al2O3 layer shows the best photovoltaic effect performance with a short-current density of 18.75 mA/cm2, an open-circuit voltage of 0.447 V and a power conversion efficiency of 3.27% with AM1.5 illumination, which is much better than Co2-C98/Si heterostructure without the Al2O3 layer. The effect of Al2O3 layer is attributed to the reduction of the interface defects, the suppression of the surface recombination and the enhancement of barrier height, which are proved by the capacitance-voltage and current-voltage measurements under dark condition. This work may shed light on the carbon/silicon based solar cells.

Publisher

Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences

Subject

General Physics and Astronomy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3