Abstract
In this paper we consider the situation that four identical two-level atoms are separately trapped in coupled single-mode optical cavities and each atom resonantly interacts with cavity via a one-photon hopping. The three-body entanglement dynamics in each cavity is studied. The influences of atom-cavity coupling constant on the three-body entanglement are discussed. The results obtained using the numerical method show that the three-body entanglement displays the collapse-revival phenomena when atom-cavity coupling constant is larger than a fixed value. On the other hand, the three-body entanglement is the result of the coherent superposition of the two-body entanglements.
Publisher
Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences
Subject
General Physics and Astronomy
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献