Time periodic electroosmotic flow of the generalized Maxwell fluids between two micro-parallel plates with high Zeta potential

Author:

Chang Long ,Jian Yong-Jun , ,

Abstract

In this study, semi-analytical solutions are presented for the time periodic (electroosmotic flow) of linear viscoelastic fluids between micro-parallel plates. The linear viscoelastic fluids used here are described by the general Maxwell model. The solution involves analytically solving the nonlinear Poisson-Boltzmann (P-B) equation, the Cauchy momentum equation and the general Maxwell constitutive equation. By numerical computations, the influences of the dimensionless wall Zeta potential0, the periodic EOF electric oscillating Reynolds number Re, and normalized relaxation times 1 on velocity profiles are presented. Results show that for prescribed electrokinetic width K, relaxation time 1 and oscillating Reynolds number Re, higher Zeta potential 0 will lead to larger amplitude of EOF velocity, and the variation of velocity is restricted to a very narrow region close to the Electric double-layer. In addition, with the increase of relaxation time 1, the elasticity of the fluid becomes conspicuous and the velocity variations can be expanded to the whole flow field. For prescribed Re, longer relaxation time 1 will lead to quick change of the EOF velocity profile, and the amplitude becomes larger gradually.

Publisher

Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences

Subject

General Physics and Astronomy

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3