Improved algorithm of spectral coarse graining method of complex network

Author:

Zhou Jian ,Jia Zhen ,Li Ke-Zan , ,

Abstract

Complex network as a key approach to understanding many complex systems, such as biological, chemical, physical, technological and social systems, is ubiquitous in nature and society. Synchronization of large-scale complex networks is one of the most important issues in network science. In the last two decades, much attention has been paid to the synchronization of complex dynamic networks, especially the meso-scale networks. However, many real networks consist of even hundreds of millions of nodes. Analyzing the synchronization of such large-scale coupled complex dynamic networks often generate a large number of coupled differential equations, which may make many synchronization algorithms inapplicable for meso-scale networks due to the complexities of simulation experiments. Coarse graining method can map the large-scale networks into meso-scale networks while preserving some of topological properties or dynamic charac-teristics of the original network. Especially, the spectral coarse-graining scheme, as a typical coarse graining method, is proposed to reduce the network size while preserving the synchronization capacity of the initial network. Nevertheless, plenty of studies demonstrate that the components of eigenvectors for the eigenvalue of the coupling matrix, which can depict the ability to synchronizing networks, distribute unevenly. Most of the components distribute concentrically and the intervals are small, while some other components distribute dispersedly and the intervals are large, which renders the applications of original spectral coarse graining method unsatisfactory. Inspired by the adaptive clustering, we propose an improved spectral coarse graining algorithm, which clusters the same or the similar nodes in the network according to the distance between the components of eigenvectors for the eigenvalue of network coupling matrices, so that the nodes with the same or the similar dynamic properties can be effectively clustered together. Compared with the original spectral coarse graining algorithm, this method can improve the accuracy of the result of clustering. Meanwhile, our method can greatly reduce algorithm complexity, and obtain better spectral coarse graining result. Finally, numerical simulation experiments are implemented in four typical complex networks: NW network, ER network, BA scale-free network and clustering network. The comparison of results demonstrate that our method outperforms the original spectral coarse graining approach under various criteria, and improves the effect of coarse graining and the ability to synchronize networks.

Publisher

Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences

Subject

General Physics and Astronomy

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Self-similarity of complex networks under centrality-based node removal strategy;Chinese Physics B;2023-09-01

2. The characteristics of cycle-nodes-ratio and its application to network classification;Communications in Nonlinear Science and Numerical Simulation;2021-08

3. A coarse graining algorithm based on m-order degree in complex network;Physica A: Statistical Mechanics and its Applications;2020-11

4. A new spectral coarse-graining algorithm based on K-means clustering in complex networks;Modern Physics Letters B;2019-01-10

5. Optimization algorithms for spectral coarse-graining of complex networks;Physica A: Statistical Mechanics and its Applications;2019-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3