A jet acceleration mechanism for the black hole disk system

Author:

Xu Jia-Di ,Jiang Zhi-Xiong ,Gong Xiao-Long , ,

Abstract

A jet acceleration mechanism of extracting energy from the disk-corona surrounding a rotating black hole is proposed. In this disk-corona scenario, the central object is a rotating Kerr black hole, and a geometrically thin and optically thick disk is sandwiched by a slab corona. The large-scaled magnetic field plays an important role in jet acceleration mechanism. So we obtain the value of the magnetic field in such a disk-corona system by solving the disk dynamic equations in the context of general relativity. The results show that the value of magnetic field decreases with the increase of disk radius, while increases with the increase of black hole spin parameter a*. Then the analytical expression of the jet power is derived based on the electronic circuit theory of the magnetosphere. It is found that the jet power increases obviously with increasing black hole spin parameter a* and magnetic stress parameter . Furthermore, the calculation results also show that the jet power is mainly from the inner region of the disk-corona system, which is consistent with the observations of the jet. Finally, a sample composed of the 23 Fermi blazars with high jet power is used to explore our jet production mechanism. The conclusion suggests that our jet acceleration mechanism can simulate all sources with high power jet. By comparing with the observational data, we find that these high jet power sources cannot be explained by the Blandford-Znajek mechanism, even if the central object is extreme Kerr black hole.

Publisher

Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences

Subject

General Physics and Astronomy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3