Optimization of magnetoelectricity in thickness shear mode LiNbO3/magnetostrictive laminated composite

Author:

Xin Cheng-Zhou ,Ma Jian-Nan ,Ma Jing ,Nan Ce-Wen ,

Abstract

Magnetoelectric (ME) composites have recently attracted much attention and triggered a great number of research activities, owing to their potential applications in sensors and transducers. Many researches have focused on the enhancement of ME coefficient by choosing suitable composite material and vibration mode based on the coupling between stress and strain. Besides normal stress, another vibration mode, shear mode, is further discussed as a potential high-frequency resonant device for a high frequency magnetic field detector, and it is useful to optimize the shear ME coefficient to broaden the application scope of the compositions. In this paper, an elasticity method is used to calculate ME coefficients of thickness shear mode LiNbO3/magnetostrictive laminated composites for various crystal orientations of LiNbO3, magnetostrictive materials and material sizes. The stretch-shear structure and shear-shear modes of the composite with considering the boundary condition are both discussed and further optimized. According to the structure design of stretch-shear mode composite from the literature, we design a new structure to achieve the uniform and pure shear ME effect, which changes the magnetostrictive phase on the bonding part into rigid material to avoid stretch deformation. We find that in the shear-shear ME composite, the structure should not move in the in-plane direction in order to realize the parallelogram deformation under shear stress, but should be free in the thickness direction to meet the change of thickness with shear deformation. For the stretch-shear mode Metglas/LiNbO3 [(xzlt) x/y], the shear ME coefficient E15 as a function of orientation of LiNbO3 shows that the maximum E15 is 235.1 mV/(cmOe) when x=0 and y=30. The results indicate that optimal shear ME coefficient is obtained at (xzt) 30 LiNbO3, resulting from the maximum shear piezoelectric coefficient dp15. By changing the material size in stretch-shear composite, the shear ME coefficient increases with the increase of thickness of magnetostrictive phase, because the stretch force increases with the increase of the cross-sectional area of magnetostrictive phase. The maximum values of E15 are, respectively, 24.13 V/(cmOe) in the stretch-shear mode Terfenol-D/LiNbO3 and 11.46 V/(cmOe) in the shear-shear mode Metglas/LiNbO3 by the optimization of material sizes. Experimental results are in accordance with calculation results. It is confirmed that LiNbO3 (xzt) 30 is the best choice for achieving the largest shear ME effect, and thicker Terfenol-D can help to achieve a larger ME coefficient in this stretch-shear composite. This work provides a design method to choose the structure and crystal orientation of shear LiNbO3-based ME laminated composite, which shows a prospect of applications in high-mechanical-quality factor Qm and high-frequency magnetic detectors with shear resonant devices.

Publisher

Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences

Subject

General Physics and Astronomy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3