Discrete optimal control for Birkhoffian systems and its application to rendezvous and docking of spacecrafts

Author:

Kong Xin-Lei ,Wu Hui-Bin , ,

Abstract

In general, optimal control problems rely on numerically rather than analytically solving methods, due to their nonlinearities. The direct method, one of the numerically solving methods, is mainly to transform the optimal control problem into a nonlinear optimization problem with finite dimensions, via discretizing the objective functional and the forced dynamical equations directly. However, in the procedure of the direct method, the classical discretizations of the forced equations will reduce or affect the accuracy of the resulting optimization problem as well as the discrete optimal control. In view of this fact, more accurate and efficient numerical algorithms should be employed to approximate the forced dynamical equations. As verified, the discrete variational difference schemes for forced Birkhoffian systems exhibit excellent numerical behaviors in terms of high accuracy, long-time stability and precise energy prediction. Thus, the forced dynamical equations in optimal control problems, after being represented as forced Birkhoffian equations, can be discretized according to the discrete variational difference schemes for forced Birkhoffian systems. Compared with the method of employing traditional difference schemes to discretize the forced dynamical equations, this way yields faithful nonlinear optimization problems and consequently gives accurate and efficient discrete optimal control. Subsequently, in the paper we are to apply the proposed method of numerically solving optimal control problems to the rendezvous and docking problem of spacecrafts. First, we make a reasonable simplification, i.e., the rendezvous and docking process of two spacecrafts is reduced to the problem of optimally transferring the chaser spacecraft with a continuously acting force from one circular orbit around the Earth to another one. During this transfer, the goal is to minimize the control effort. Second, the dynamical equations of the chaser spacecraft are represented as the form of the forced Birkhoffian equation. Then in this case, the discrete variational difference scheme for forced Birkhoffian system can be employed to discretize the chaser spacecraft's equations of motion. With further discretizing the control effort and the boundary conditions, the resulting nonlinear optimization problem is obtained. Finally, the optimization problem is solved directly by the nonlinear programming method and then the discrete optimal control is achieved. The obtained optimal control is efficient enough to realize the rendezvous and docking process, even though it is only an approximation of the continuous one. Simulation results fully verify the efficiency of the proposed method for numerically solving optimal control problems, if the fact that the time step is chosen to be very large to limit the dimension of the optimization problem is noted.

Publisher

Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences

Subject

General Physics and Astronomy

Reference20 articles.

1. Mei F X, Shi R C, Zhang Y F, Wu H B 1996 Dynamics of Birkhoff System (Beijing: Beijing Institute of Technology Press) (in Chinese) [梅凤翔, 史荣昌, 张永发, 吴惠彬 1996 Birkhoff 系统动力学 (北京: 北京理工大学出版社)]

2. Cui J C, Song D, Guo Y X 2012 Acta Phys. Sin. 61 244501 (in Chinese) [崔金超, 宋端, 郭永新 2012 物理学报 61 244501]

3. Cui J C, Zhao Z, Guo Y X 2013 Acta Phys. Sin. 62 090205 (in Chinese) [崔金超, 赵喆, 郭永新 2013 物理学报 62 090205]

4. Zhang Y 2010 Commun. Theor. Phys. 53 166

5. Zhai X H, Zhang Y 2014 Nonlinear Dyn. 77 73

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3