Structures and novel superconductivity of hydrogen-rich compounds under high pressures

Author:

Duan De-Fang ,Ma Yan-Bin ,Shao Zi-Ji ,Xie Hui ,Huang Xiao-Li ,Liu Bing-Bing ,Cui Tian ,

Abstract

Metallic hydrogen can be realized theoretically at high pressure, which suggests that it will be a room-temperature superconductor due to the high vibrational frequencies of hydrogen atoms. However, the metallic state of hydrogen is not observed in experiment at up to 388 GPa. Scientists have been exploring various new ways to achieve hydrogen metallization. Hydrogen-rich compounds can be metallized at much lower pressures because of chemical pre-compression. Moreover, because such materials are dominated by hydrogen atoms, some novel properties can be found after metallization, such as high Tc superconductivity. Therefore, hydrogen-rich compounds are potential high-temperature superconductors, and this method is also believed to be an effective way to metalize hydrogen, which has aroused significant interest in lots of fields, such as physics, material science, etc. In a word, hydrogen-rich compounds are expected to become a new member of superconductor family:hydrogen-based superconductor. Very recently, the theoretical prediction and the successful experimental discovery of high-temperature superconductivity at 200 K in a sulfur hydride compound at high pressure have set a record, which inspired further efforts to study the superconductivity of hydrogen-rich compounds. The present review focuses on crystal structures, stabilities, interaction between atoms, metallization, and superconductivity of several typical hydrogen-rich compounds at high pressures. Furthermore, higher Tc superconductors can be expected to be found in hydrogen-rich compounds in the future.

Publisher

Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences

Subject

General Physics and Astronomy

Reference83 articles.

1. Mazin I I 2015 Nature 525 40

2. Bednorz J G, Mller K A 1986 Z. Physik. B 64 189

3. Zhao Z X, Chen L Q, Cui C G, Huang Y Z, Liu J X, Chen G H, Li S L, Guo S Q, He Y Y 1987 Chin. Sci. Bull. 32 177 (in Chinese)[赵忠贤, 陈立泉, 崔长庚, 黄玉珍, 刘锦湘, 陈赓华, 李山林, 郭树权, 何业冶1987科学通报32 177]

4. Zhao Z X, Chen L Q, Yang Q S, Huang Y Z, Chen G H, Tang R M, Liu G R, Cui C G, Chen L, Wang L Z, Guo S Q, Li S L, Bi J Q 1987 Chin. Sci. Bull. 32 412 (in Chinese)[赵忠贤, 陈立泉, 杨乾声, 黄玉珍, 陈赓华, 唐汝明, 刘贵荣, 崔长庚, 陈烈, 王连忠, 郭树权, 李山林, 毕建清1987科学通报32 412]

5. Hor P H, Meng R L, Wang Y Q, Gao L, Huang Z J, Bechtold J, Forster K, Chu C W 1987 Phys. Rev. Lett. 58 1891

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3