A method of judging a Birkhoffian to be a first integral of constrained mechanical system

Author:

Cui Jin-Chao ,Liao Cui-Cui ,Liu Shi-Xing ,Mei Feng-Xiang , , ,

Abstract

As is well known, the development of analysis mechanics from Lagrangian systems to Birkhoffian systems, achieved the self-adjointness representations of the constrained mechanical systems. Based on the Cauchy-Kovalevsky theorem of the integrability conditions for partial differential equations and the converse of the Poincar lemma, it can be proved that there exists a direct universality of Birkhoff's equations for local Newtonian system by reducing Newton's equations into a first-order form, which means that all local, analytic, regular, finite-dimensional, unconstrained or holonomic, conservative or non-conservative forms always admit, in a star-shaped neighborhood of a regular point of their variables, a representation in terms of first-order Birkhoff's equations in the coordinate and time variables of the experiment. The systems whose equations of motion are represented by the first-order Birkhoff's equations on a symplectic or a contact manifold spanned by the physical variables, are called Birkhoffian systems. The theory and method of Birkhoffian dynamics are used in hadron physics, quantum physics, relativity, rotational relativity, and fractional-order dynamics. At present, for a given dynamical system, it is important and essential to determine whether a Birkhoffian function is the first integral of the system. Although the numerical approximation is an important method of solving the differential equations, the direct theoretical analysis is more helpful for refining the general integral method, and more consistent with the usual way of solving problems of analysis mechanics. In this paper, we study how to judge whether a given Birkhoffian dynamical function to be a first integral of Birkhoff's equations, based on the point of Birkhoffian dynamical functions carrying all the informationabout motion of the system, and use the thought of deriving the first integrals of Hamiltonian systems. In Section 2, the normal first-order form and the Birkhoff's equations of the equations of motion of holonomic systems are introduced. In Section 3, we prove that the Birkhoffian function of an autonomous Birkhoffian system must be a first integral, and the Birkhoffian function of a semi-autonomous system must not be a first integral. Moreover, the energy integral, cyclic integral and Hojman integral of the non-autonomous Birkhoffian systems are given. In Section 4, two examples are given to illustrate the applications of the results. In Section 5, the full text is summarized and the results are discussed. It is necessary to point out that the judging method is effective to determine whether a given Birkhoffian functions can be identified to be a first integral of Birkhoff's equations, but other new first integral cannot be found with this method. One possible method of covering the shortage is to obtain other equivalent Birkhoffian functions in terms of isotopic transformations of Birkhoff's equations, and then use our results to seek the new first integral. In addition, we also hope to develop a more direct method of obtaining the first integrals of Birkhoff's equations in the next study.

Publisher

Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences

Subject

General Physics and Astronomy

Reference27 articles.

1. Santilli R M 1978 Foundations of Theoretical Mechanics I (New York:Springer-Verlag) pp219-235

2. Chen B 2012 Analytical Dynamics (2nd Ed.) (Beijing:Peking University Press) pp5-15 (in Chinese)[陈滨 2012 分析动力学(第二版) (北京:北京大学出版社) 第5–15页]

3. Mei F X 1985 Foundations of Mechanics of Nonholonomic Systems (Beijing:Beijing Institute of Technology Press) pp6-45 (in Chinese)[梅凤翔 1985 非完整系统力学基础 (北京:北京工业学院出版社) 第6–45 页]

4. Marsden J E, Ratiu T S 1999 Introduction to Mechanics and Symmetry 2nd Edition (New York:Springer-Verlag) pp181-210

5. Mei F X, Shi R C, Zhang Y F et al. 1996 Dynamics of Birkhoff System (Beijing:Beijing Institute of Technology Press) pp8-25 (in Chinese)[梅凤翔, 史荣昌, 张永发 等 1996 Birkhoff系统动力学 (北京:北京理工大学出版社) 第8–25页]

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3