Airborne cavity enhanced absorption spectroscopy for high time resolution measurements of atmospheric NO2

Author:

Liang Shuai-Xi ,Qin Min ,Duan Jun ,Fang Wu ,Li Ang ,Xu Jin ,Lu Xue ,Tang Ke ,Xie Pin-Hua ,Liu Jian-Guo ,Liu Wen-Qing , , ,

Abstract

Nitrogen dioxide (NO2) is an important trace gas in the troposphere and plays a vital role in many aspects of the chemistry of the atmosphere. Accurate measurement of NO2 is the primary step to understand its role in atmospheric chemistry and to establish effective pollution prevention policies. Relatively few measurements of the NO2 profile in troposphere by using point-type instruments with high temporal resolution have been carried out in China. Due to the relatively poor measurement environment on airborne platform, the measurement system requires good anti-vibration ability, stability and environmental adaptability. A home-built incoherent broadband cavity enhanced absorption spectrometer (IBBCEAS) on the airborne platform is presented in this paper, and applied to high temporal resolution observations of the actual atmospheric NO2 spatial distribution. According to the strong absorption of NO2 in a wavelength range from 449 nm to 470 nm, we choose a high-power 457 nm light-emitting diode (LED) as a light source. A Peltier is used to control LED temperature and to stabilize the LED temperature at (200.1)℃. The pure PFA material optical cavity and sampling tube are used to reduce wall loss. And we choose the highly reflecting mirrors (reflectivity R0.9999@440-450 nm) to improve the effective optical path. A 2 m filter is used at the inlet of instrument to remove most of the particulate matter in the sample flows, which reduce the effect of particulate matter on the effective path length. In order to meet the requirement for time resolution in airborne measurement, we use an off-axis paraboloic mirror instead of an achromatic lens to improve the optical coupling efficiency. The reflectivity of the highly reflecting mirror is calibrated by the difference in Rayleigh scattering between He and N2. And the optimum averaging time of the IBBCEAS instrument is confirmed to be 1000 s by the Allan variance analysis. Detection limit (1) of 10 ppt for NO2 is achieved with an optimum acquisition time of 1000 s. Concentrations of NO2 are recorded and compared with data from a long path different optical absorption spectroscopy instrument, and the results show good agreement with each other. The linear correlation coefficient R2 is 0.86 in a slope of 0.92 with an offset of -0.402 ppb. The IBBCEAS system is deployed on an airborne platform, and the detection limit is 95 ppt (1) with a time resolution of 2 s. The profile of tropospheric NO2 by airborne observation is obtained over Shijiazhuang in Northern China. IBBCEAS system in the airborne platform shows good stability.

Publisher

Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences

Subject

General Physics and Astronomy

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3