Propagating properties of spatial solitons in the competing nonlocal cubic-quintic nonlinear media

Author:

Huang Guang-Qiao ,Lin Ji ,

Abstract

We study the new spatial optical solitons and their propagating properties in the one-dimensional nonlocal cubic-quintic (C-Q) nonlinear model by the numerical method. We obtain multi-bright solitons and multipole soliton solutions in the one-dimensional nonlocal C-Q nonlinear model. The propagation of bright solitons is stable in the competing nonlocal cubic self-defocusing and quintic self-focusing nonlinear media when these nonlocal and nonlinear parameters are in the appropriate value domain. Considering the different nonlinear cubic effects, the interaction between two optical solitons with the same phase in the general nonlocal media displays the attraction or the repulsion for different nonlocal and nonlinear parameters. We find that the interval of two solitons affects the interaction between them. The refractive index is changed with the propagating constant when the nonlocal constant d3 is 10. Moreover, the triplepole, quadrupole and pentapole solitons can propagate steadily when the nonlocal parameters are appropriate, but hexa-pole (or above) solitons propagate unsteadily for any nonlocal parameter. Furthermore, we investigate the multi-pole solitons and their propagation stabilities by the Newton difference method and the Fourier split step method, obtain the stable propagation conditions for dipole, triplepole and quadrupole solitons, and find that the propagation of the pentapole and higher-order pole solitons is unstable. We also discuss the interactions of multi-pole solitons when they propagate along the axis z. The interactions are attraction or repulsion when the nonlocal and the nonlinear parameters are different. Meanwhile, we simulate the evolution of the refractive index along the axis z when the spatial optical solitons are multi-pole solitons. Finally, we study the relation between the power of soliton and the propagation constant under different degree of nonlocality. The power of the single bright soliton does not monotonically increase with the increasing propagation constant when the degree of nonlocality d3 is 10. We also derive the relation between the power of dipole bright solitons with the cubic nonlinearity parameter and the propagation constant under different degree of nonlocality. The power decreases monotonically with the increasing propagation constant when the cubic nonlinearity is a certain value or with the increasing cubic nonlinearity when the propagation constant is a certain value.

Publisher

Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences

Subject

General Physics and Astronomy

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3