High-pressure structural and optical properties of organic-inorganic hybrid perovskite CH3NH3PbI3

Author:

Guo Hong-Wei ,Liu Ran ,Wang Ling-Rui ,Cui Jin-Xing ,Song Bo ,Wang Kai ,Liu Bing-Bing ,Zou Bo , ,

Abstract

Recent advance in highly efficient solar cells based on organic-inorganic hybrid perovskites has triggered intense research efforts to ascertain the fundamental properties of these materials. In this work, we utilize diamond anvil cell to investigate the pressure-induced structural and optical transformations in methylammonium lead iodide (CH3NH3PbI3) at pressures ranging from atmospheric pressure to 7 GPa at room temperature. The synchrotron X-ray diffraction experiment shows that the sample transforms from tetragonal (space group I4cm) to orthorhombic (space group Imm2) phase at 0.3 GPa and amorphizes above 4 GPa. Pressure dependence of the unit cell volume of CH3NH3PbI3 shows that the unit cell volume undergoes a sudden reduction at 0.3 GPa, which can prove the observed phase transition. We provide the high-pressure optical micrographs obtained from a diamond anvil cell. Upon compression, we can visually observe that the opaque black sample gradually transforms into a transparent red one above 4 GPa. We analyze the pressure dependence of the band gap energy based on the optical absorption and photoluminescence (PL) results. As pressure increases up to 0.25 GPa, the absorption edge and PL peak move to the longer wavelength region of 9 nm. However, abrupt blueshifts of the absorption edge and PL peak occur at 0.3 GPa, followed by a gradual blueshift up to 1 GPa, these phenomena correspond to the previously observed phase transitions. Phase transition increases the band gap energy of CH3NH3PbI3 as a result of reductions in symmetry and tilting of the[PbI6]4- octahedral. Upon further compression, the sample exhibits pressure-induced amorphization at about 4 GPa, which significantly affects its optical properties. Further high pressure Raman and infrared spectroscopy experiments illustrate the high pressure behavior of organic CH3NH3+ cations. Owing to the presence of hydrogen bonding between organic cations and the inorganic framework, all of the bending and rocking modes of CH3 and NH3 groups are gradually red-shifted with increasing pressure. The transition of NH stretching mode from blueshift to redshift as a result of the attractive interactions between hydrogen atoms and iodine atoms is gradually strengthened. Moreover, all the observed changes are fully reversible when the pressure is completely released. In situ high pressure studies provide essential information about the intrinsic properties and stabilities of organic-inorganic hybrid perovskites, which significantly affect the performances of perovskite solar cells.

Publisher

Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences

Subject

General Physics and Astronomy

Reference39 articles.

1. Wang L, Zhang X D, Yang X, Wei C C, Zhang D K, Wang G C, Sun J, Zhao Y 2013 Acta Phys. Sin. 62 058801 (in Chinese)[王利, 张晓丹, 杨旭, 魏长春, 张德坤, 王广才, 孙建, 赵颖2013物理学报62 058801]

2. Yu H Z 2013 Acta Phys. Sin. 62 027201 (in Chinese)[於黄忠2013物理学报62 027201]

3. Han A J, Sun Y, Li Z G, Li B Y, He J J, Zhang Y, Liu W 2013 Acta Phys. Sin. 62 048401 (in Chinese)[韩安军, 孙云, 李志国, 李博研, 何静靖, 张毅, 刘玮2013物理学报62 048401]

4. Kojima A, Teshima K, Shirai Y, Miyasaka T 2009 J. Am. Chem. Soc. 131 6050

5. Kim H S, Lee C R, Im J H, Lee K B, Moehl T, Marchioro A, Moon S J, Baker R H, Yum J H, Moser J E, Grätzel M, Park N G 2012 Sci. Rep. 2 591

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3