Wetting behaviors of the molten silicon on graphite surface

Author:

Cheng Guang-Gui ,Zhang Zhong-Qiang ,Ding Jian-Ning ,Yuan Ning-Yi ,Xu Duo , , , ,

Abstract

A theory which was proposed by Scheid et al. in 2010 (Scheid B, van Nierop E A, Stone H A 2010 Appl. Phys. Lett. 97 171906) suggests that very thin ribbons of molten material can be drawn out of a melt by adequately tuning the temperature gradient along the dynamic meniscus that connects the static meniscus at the melting bath to the region of the drawn flat film. Based on this theory, one-step manufacturing ultra-thin silicon wafer by pulling out from a molten silicon bath has attracted considerable attention in recent year due to its many attractive performances such as low cost, simple process, etc. By using this method, solar cell can have intensive applications due to its low cost and stable output efficiency. The results show that the thermal capillarity effect plays a great role in preparing the ultra-thin silicon. The thickness of the silicon wafer is sensitive to the capillary length and the strength of the surface tension variation as well. In order to reveal the mechanism for the effect of thermal capillary on the fabrication of ultra-thin silicon wafer, a thermal capillary finite element model is developed for the horizontal ribbon growth system to study the wetting behaviors of molten silicon on graphite. The mathematical model is established and simulated by using the commercial software; several parameters such as mass, viscous stress and capillary force are calculated. The wetting processes are tested by changing surface roughness (Ra=0.721 m and Ra=0.134 m), system temperatures (17371744 K), and durations (1030 s) at constant temperature on a high-temperature, high-vacuum contact angle measurement instrument. It is found that the wetting angle of silicon droplet on graphite decreases with surface roughness and temperature increasing; the wetting angle comes down with time going by (lasting 30 s) at constant temperature, which is consistent with the theoretical result of Wenzel. The influence of surface tension on wetting process is studied by analyzing the distributions of pressure and velocity field. It is shown that the differential pressure at the solid-liquid interfaces, induced by thermal capillary effect, decreases in the wetting process and reaches a balance which prevents the droplet from being wetted. At T=1700 K, the wetting angle and the shape of droplet change quickly within 0.4 ms and eventually become stable after 5 ms as shown in the simulation. The spreading length L and droplet height h at the steady-state are calculated with considering the influence of droplet radius on the wetting process. The results show that both L and h are directly related to the steady-state of wetting angle. The surface tension dominates the wetting process for droplet radius R0 5mm; while for R0 5 mm, the wetting process is dominated by gravity.

Publisher

Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences

Subject

General Physics and Astronomy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3