Intelligent particle filter based on bat algorithm

Author:

Chen Zhi-Min ,Tian Meng-Chu ,Wu Pan-Long ,Bo Yu-Ming ,Gu Fu-Fei ,Yue Cong , ,

Abstract

Particle filer is apt to have particle impoverishment with unstable filtering precision, and a large number of granules are required to estimate the nonlinear system accurately, which reduces the comprehensive performance of the algorithm. To solve this problem, a new particle filter based on bat algorithm is presented in this paper, where particles are used to represent individual bat so as to imitate the search process of bats for preys. In traditional resampling process, particles are directly discarded, the improved algorithm adopts another approach and solves the problem of particle impoverishment. It combines the advantages of particle swarm optimization algorithm and harmonic algorithm perfectly. New particle filter has capacity of global and local search and is superior in computation accuracy and efficiency. By adjusting frequency, loudness, and impulse emissivity of particle swarm, the optimal particle at that time is followed by particle swarm to search in the solution space. The global search and local search can be switched dynamically to improve the overall quality of the particles swarm as well as the distribution rationality. In addition, the improved particle filter uses Lvy flight strategy to avoid being attracted by harmful local optimal solution, it expands the space of research and further promotes the optimization effect of particle distribution. Using the useful information about particle swarm, improved particle filter can make particles get rid of local optimum and reduce the waste of iterations in insignificant status change. Based on the number of valid particle samples, it can improve quality of particle samples by expanding their diversity. In information interaction mechanism of improved particle filter, the method in this paper sets scoreboard of particle target function to compare the value of particle target function at each iteration sub-moment with the value of target function on scoreboard to gain global optimum of all particles at current filtering moment. Taking information interaction between global optimum and particle swarm, the guiding function of global optimum is realized. The process of particle optimization is ended prematurely through setting a maximum iteration or termination threshold. There is a tendency for the whole particle swarm closing to high likehood area without global convergence so that the advantages of improved particle filter in accuracy and speed will not be damaged. In addition, convergence analysis and computational complexity analysis are given in this paper. Experiment indicates that this method can improve the particle diversity and prediction accuracy of particle filter, and meanwhile reduce the particle quantity obviously which is required by the state value prediction for nonlinear system.

Publisher

Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences

Subject

General Physics and Astronomy

Reference22 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3