2.5 kW average power, two-channel spectral-beam-combined output based on transmitting volume Bragg grating

Author:

Zhou Tai-Dou ,Liang Xiao-Bao ,Li Chao ,Huang Zhi-Hua ,Feng Jian-Sheng ,Zhao Lei ,Wang Jian-Jun ,Jing Feng ,

Abstract

Spectral beam combination based on volume Bragg gratings is an effective approach to obtaining high power laser output. In spectral beam combining system, spectral channel spacing will affect the number of non-combined sub-beams and the overall combined output power due to the finite available gain bandwidth. Based on coupled wave theory, a two-channel high power spectral beam combining model is proposed. By appropriately relaxing the requirements for the spectral channel spacing and line-width of sub-beams, the higher combined output power can be obtained but the spectral density does not significantly decrease. In this work, a 2-channel spectral beam combining system is demonstrated to present a 2.5 kW combined power with combining efficiency 85% by employing a transmitting volume Bragg grating. The combining system has a high spectral density of 0.51 kW/nm with 5 nm spectral spacing between channels. The output can keep a good beam quality when the combined power is less than 1 kW, while the significant degradation of combined beam quality occurs when output power is 1.5 kW and is restricted mainly by the dispersion properties and thermal effects of volume Bragg gratings. During this 2-channel beam combining process, no special active cooling measure is used. Interactions between laser radiation and the grating are verified. Thermal absorption of high power laser radiation in the grating will cause the temperature to remarkably increase, resulting in the thermal expansion of the grating period, which leads to the degradations of diffraction efficiency and the spectral selectivity. Research is also focused on the surface distortion, and the results indicate that the thermal-induced wave-front aberrations of the non-combined sub-beams lead to the deterioration of beam quality. Transmitted and diffracted beams experience wave-front aberrations to different degrees, leading to distinct beam deterioration.

Publisher

Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences

Subject

General Physics and Astronomy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3