Cyclical pulsation properties of particles in cone silo

Author:

Wang Hui ,Jia Fu-Guo ,Han Yan-Long ,Zhang Ya-Xiong ,Cao Bin ,

Abstract

Intense particle pulsation during discharging may lead to the vibration of silo, even the failure of silo structure. To date, the studies related to particle pulsation have mainly concentrated in the following aspects: the noise caused by vibration of silo, the minimum decisive height to produce silo music and the factors affecting particle pulsation. However, the above studies cannot in depth analyze the motion state nor the flow law of all particles in silo. To explore the pulsation characteristics of particles, in this paper we simulate the discharging tests of ellipsoidal particles in deep silo with different half-cone angles based on the discrete element method, in order to reveal the mechanisms of particle pulsation and variation of contact force among the particles in the silo. In each simulation discharging test, the cylinder section of silo is divided into 4 fixed areas where flow behavior and the motion characteristics of particles are analyzed. The simulation results show that the velocity fluctuation of particles exists in the whole discharging process. At the early stage of discharging, the cyclical pulsation with large amplitude appears while irregular fluctuation with small amplitude occurs in the later stages. The study also finds that the dynamic characteristics of the axial force among particles are the same as those of velocity pulsation in the corresponding areas. Besides, the amplitude of particle pulsation shows an increase trend and the contact force of particles presents more periodic pulsation along the negative direction of outlet. The pulsation characteristics(velocity pulsation and force pulsation) of adjacent particle layers are similar, including similar waveform and identical cycle. During the intense pulsation stage, each minimum of the axial force of particles in the top layer is close to the gravity, indicating that the contact force among these particles disappears. Furthermore, the periodic pulsation of particles causes the contact force among particles to periodically disappear. It is noted that the stability of discharging, frequency, amplitude and duration of the intense pulsation increase with the decrease of the half-cone angle. In order to evaluate the fluctuation degree of the velocity pulsation, the standard deviation of particle velocities is used. Note that the particle velocities are no longer subjected to the influence of rising trend, which result is obtained by the finite difference method. The results show that the standard deviation gradually increases with the decrease of half-cone angle. This is because the increase of half-cone angle causes the time and amplitude of stable fluctuation to decrease. This numerical study of particle pulsation will provide the reference for safety design of discharging devices.

Publisher

Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences

Subject

General Physics and Astronomy

Reference26 articles.

1. Wang G Q, Hao W J, Wang J X 2010 Discrete Element Method and its Application in EDEM(Xi'an:Xi'an Technological University press) p14(in Chinese)[王国强, 郝万军, 王继新2010离散单元法及其在EDEM上的实践(西安:西安工业大学出版社)第14页]

2. Sun Q C, Hou M Y, J F 2011 Physics and Mechanics of Granular Materials(Beijing:Science Press) p242(in Chinese)[孙其诚, 厚美瑛, 金峰2011颗粒物质物理与力学(北京:科学出版社)第242页]

3. Khalilitehrani M, Abrahamsson P J, Rasmuson A 2014 Powder Technol. 263 45

4. Liu Y, Han Y L, Jia F G, Yao L N, Wang H, Shi Y F 2015 Acta Phys. Sin. 64 114501 (in Chinese)[刘扬, 韩燕龙, 贾富国, 姚丽娜, 王会, 史宇菲2015物理学报64 114501]

5. Chan K W, Kwan A K H 2014 Particuology 16 108

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3