Generation of non-uniformly correlated stochastic electromagnetic beams

Author:

Chang Cheng-Cheng ,Pu Ji-Xiong ,Chen Zi-Yang ,Chen Xu-Dong ,

Abstract

Until now, there have been many reports concerning the generation and propagation of partially coherent beams due to their less influencing ability in turbulent atmosphere and random media. Of particular interest, a Gaussian-Schell model beam has been widely chosen as a special example of partially coherent beam, since its spatial coherence degree is dependent on position only through the difference between the two position vectors. In the scalar domain, many coherent models have been well studied such as Gaussian and multi-Gaussian Schell-model sources, Bessel-Gaussian and Laguerre-Gaussian Schell-model sources and so on. Based on the theory for devising genuine cross-spectral density matrices for a stochastic electromagnetic beam, several scalar models have been also extended to the electromagnetic domain. In recent years, the propagation of partially coherent beams with spatially varying and non-uniform correlations has become a hot topic, because of their interesting characteristics such as locally sharpened and laterally shifted intensity maxima. In one of our previous studies, we have experimentally investigated the generation of non-uniformly correlated partially coherent beams. However, to the best of our knowledge, so far, there has been no investigation on the generation of non-uniformly correlated stochastic electromagnetic beams. In this paper, we theoretically and experimentally investigate the generation of non-uniformly correlated stochastic electromagnetic beams. Based on the relation between phase correlation and optical coherence, we investigate the 22 cross-spectral density matrix and the coherence distribution of the non-uniformly correlated stochastic electromagnetic beam we generated. It is shown that the coherence degree between two points in the generated beam depends not only on the distance between them, but also on the distances between the points and the center of the beam. In experiment, we use the Matlab rand function to generate a random phase pattern with uniform distribution. The modulation magnitudes of different positions are different and follow an inverse Gaussian distribution in position. Dynamic phase patterns are created from a series of random grey-scale images. Two phase-only liquid crystal spatial light modulators are employed to display computer-generated dynamic phase patterns and modulate the two orthogonally polarized components of the incident coherent light, respectively, and generate a stochastic electromagnetic beam. We measure the correlation distribution of the generated beam in Young's two-pinhole experiment. It is shown that the experimental observations are in agreement with our theoretical analyses. Other kinds of non-uniformly correlated stochastic electromagnetic beams can also be obtained by this approach. Non-uniformly correlated stochastic electromagnetic beams may have some applications in optical manipulation and free-space optical communication.

Publisher

Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences

Subject

General Physics and Astronomy

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3